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Several papers have been devoted to the group theoretical description of Ru-
bik’s cube-like puzzles [BH], [GT], [L], and [Si]. These give rise to excellent
examples and projects in undergraduate group theory courses. The square 1 puz-
zle is different in that the moves do not preserve the original cube shape of the
puzzle. In this sense, square 1 is more closely related to the famous 15 puzzle
(which changes ”"shape” since the blank square moves around) than the Rubik’s
cube.

This paper studies the group theoretic properties of the collection G of all
”words” in the basic moves of the square 1 puzzle which preserve the cube shape.
This collection G forms a group which, motivated by [W], we call the homology
group of the square 1 puzzle. The list of shapes which the square 1 puzzle can
make is given in [Sn|. It is not hard to see that the homology group of any one
of these other shapes is conjugate to G, so from a group-theoretic standpoint, we
may focus our attention on the cube.

1. The main result

Let S, denote the symmetric group of degree n, i.e., the group of permutations
of {1,2,...,n}. Let sgn : S,, = {£1} denote the homomorphism which assigns to
each permutation its sign (the sign of a cyclic permutation of length 7 is (—1)"*,
for example).

We shall see that the size of the homology group of the square 1 is about .8
billion.

Theorem 1.1. G is isomorphic to the kernel of index 2 in Sg x Sg of the homomor-
phism f: Sg x Sg — {£1} defined by f(g1,92) = sgn(g1)sgn(g2). Consequently,



G| = 213345272 = 812851200.

As a corollary of the proof of this theorem, given below, we shall see that
any even permutation of the corners is possible and any even permutation of the
wedges is possible.

Let H denote the enlarged square 1 group generated by all legal moves pre-
serving the cube shape and all illegal moves (i.e., disassembly and reassembly is
allowed) preserving the cube shape. It is clear that

HgSggXSg.

1.1. Some notation

We shall assume that the puzzle is in the solved position with the ”square 1” side
in front, right-side up. Let

e u denote rotation of the up face by 30° clockwise,
e d denote rotation of the up face by 30° clockwise,

e R denote rotation of the cube by 180° though one of the skew-diagonal
cuts (in a given position, at most one such move is possible, so this is
unambiguous).

Like the 15 puzzle, and unlike the Rubik’s cube, not any sequence of u, d, and
R’s is possible.
Let
T(x,y)=uxRxx+xyxR+u ' B(x,y)=d '« Rxx*yx*Rxd,

where z,y are moves of the square 1 puzzle.



In the notation of these diagrams, we have

uRu™'d™'Rd = (2, 8)(4,6)

T3, 1) = (1,6, 7,4')(1,6,7,4)
T(1,d% = (2,3,8,5)(2,3,8,5)
B3, 1) = (1,2,7,8)(1",6,7, 4
B(1,d%) = (3,4,5,6)(2,3,8,5).

1.2. Two subgroups

Let
G, =< T(?1),T(1,d* >

and
Gq=< B(u?1),B(1,d°) >

Lemma 1.2. G, and G4 are each isomorphic to Cy x Cy.

proof: We have T'(v*, 1)T(1,d*) = T(1,d*)T(u?,1). Moreover, T'(u? 1) and
T(1,d*) are each of order 4. Since

CiyxCy=<ab|a*=1,b"=1,ab=ba >,
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the lemma follows. O
The homology group of the square 1 puzzle is defined to be

G =< d&*,v*, B(v*,1), B(1,d*), T(u*1),T(1,d*) >

We shall use the following labelings to describe the moves of the square 1 puzzle

2. Proof of the theorem

We shall prove the theorem in the following steps:

e Show that the wedge 3-cycle (1,2,3) and the corner 3-cycle (1’,2',3') each
belong to G.

e Show that any wedge 3-cycle (1, 2,7) and each corner 3-cycle (1',2',i") belong
to G.

e Show that there is a injective homomorphism ¢ : G — Sg x Sg where the
image ¢((G) contains Ag x As.

e Conclude that G = Sg x Sg/{£1}.

Step 1: First, we claim that (1,2, 3) belongs to G. In fact, the 3-cycle (1,2, 3)
is obtained from the move

M, = (B(u?,1)%d®)x((B(u®, 1)xd3)%(B(u"3,1)xT(1,d 3)*d®)))**(B(u?, 1)*d®) .

(Incidently, this 80 move long manuever may be verified using GAP [Gap]. See
also [Sn].)

Next, we claim that (1’,2', 3') belongs to G. In fact, My = Ru*Rd—3Ru®(Ru=®)?d*Ru—3
is the product of 2-cycles (2',3')(3,4). (This move was found in [Sn].) There-
fore, u3M,u~3 is the product of 2-cycles (1/,2')(2,3). The product of these is
(1,2',3")(2,3,4). Since (2,3,4) is obtained from u3M;ju?, we see that (1,2, 3')
is in G. (This may also be verified using GAP.)

Step 2: Let g be any move in G which sends wedges 3 to wedge 1, resp., and
does not move wedges 1,2 (it may permute other wedges and corners). Then
(1,2,7) = g (1,2,3) x g~'. Thus (1,2,7) € G.

The proof that each (1/,2',4') € G is similar.
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Step 3: It is clear from our definition that there is an injection G — Sg X Sg
as sets. The verification that this is a homomorphism is straightforward.

Step 4: The group Ag is generated by the 3-cycles (1,2,4) (see [W], for ex-
ample). Since these all belong to G, all even wedge permutations are possible.
Similarly, all even corner permutations are possible. Thus Ag x Ag C G.

Let p; : Sg x Sg — Sg denote the projection onto the first factor. Let ps denote
the projection onto the second factor. For each generator g € {d?, u3, B(u?,1),
B(1,d?®),T(u?1),T(1,d*)} of G we have sgn(pi(g)) = sgn(p2(g)). Thus the image
¢(G) is strictly contained in Sg x Sg. In fact, this shows that ¢(G) is contained
in the kernel ker(f) of the homomorphism f : Sg x Sg — {£1} defined in the
statement of the theorem. Since

Ag x Ag C G C ker(f),

[ker(f) : Ag x Ag] =2, and T'(u?,1) ¢ Ag X Ag, the theorem follows. O
Acknowledgements: We have used GAP [Gap] to double check some of the

results proven in this paper. We made use of the moves given in [A] to generate
G.
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